中国沙漠 ›› 2025, Vol. 45 ›› Issue (6): 289-299.DOI: 10.7522/j.issn.1000-694X.2025.00057
• • 上一篇
王海仙1,2(
), 张勇勇1,2(
), 康文蓉1,2, 肖建华1,2, 王淑敏1,2, 魏淑娥1,2, 吴绍雄3
收稿日期:2025-01-20
修回日期:2025-03-13
出版日期:2025-11-20
发布日期:2025-11-26
通讯作者:
张勇勇
作者简介:王海仙(2002—),女,宁夏盐池人,硕士研究生,主要从事干旱区碳水循环研究。E-mail: wanghaixian23@mails.ucas.ac.cn
基金资助:
Haixian Wang1,2(
), Yongyong Zhang1,2(
), Wenrong Kang1,2, Jianhua Xiao1,2, Shumin Wang1,2, Shue Wei1,2, Shaoxiong Wu3
Received:2025-01-20
Revised:2025-03-13
Online:2025-11-20
Published:2025-11-26
Contact:
Yongyong Zhang
摘要:
为探讨干旱半干旱区典型植被类型蒸散比的季节动态及其对土壤水分与气象因子的响应机制,本研究基于全球FLUXNET数据集中的24个典型植被类型站点(有林草地、稀树草原、稀疏灌木林和草地)的长期观测数据,采用经典统计学量化蒸散比及其影响因素,结合阈值回归模型(Threshold Regression Model)和赤池信息准则(Akaike Information Criterion, AIC)识别土壤水分阈值及最优拟合模型。结果表明:干旱半干旱区月均蒸散比为0.31,其中有林草地的蒸散比最高(0.36),稀疏灌木林蒸散比最低(0.21),表明区域能量分配以感热通量为主;蒸散比呈现明显季节性变化,稀疏灌木林的蒸散比季节波动最大(Cv=0.37),表现出较强的季节不稳定性;土壤水分是调控蒸散比的关键因子(r=0.66, P<0.05)。调控存在非线性阈值效应:在土壤水分阈值(4.73%~15.98%)前后,蒸散比的响应模式不同,最优拟合模型均为步进式分段模型。
中图分类号:
王海仙, 张勇勇, 康文蓉, 肖建华, 王淑敏, 魏淑娥, 吴绍雄. 干旱半干旱区典型植被类型蒸散比及土壤水分阈值[J]. 中国沙漠, 2025, 45(6): 289-299.
Haixian Wang, Yongyong Zhang, Wenrong Kang, Jianhua Xiao, Shumin Wang, Shue Wei, Shaoxiong Wu. Evaporative fractions and soil moisture thresholds in typical vegetation types of arid and semi-arid regions[J]. Journal of Desert Research, 2025, 45(6): 289-299.
| 序号 | 土地覆盖类型(IGBP) | 定义 |
|---|---|---|
| 1 | 稀疏灌木林(OSH) | 覆盖度10%~60%,高度低于2 m,常绿或落叶的木本植被用地 |
| 2 | 稀树草原(SAV) | 森林覆盖度10%~30%,高度超过2 m,和草本植被或其他林下植被系统组合的混合用地类型 |
| 3 | 有林草地(WSA) | 森林覆盖度30%~60%,高度超过2 m,和草本植被或其他林下植被系统组成的混合用地类型 |
| 4 | 草地(GRA) | 由草本植被类型覆盖,森林和灌木覆盖度小于10% |
表1 IGBP 土地覆盖分类系统
Table 1 IGBP land classification system
| 序号 | 土地覆盖类型(IGBP) | 定义 |
|---|---|---|
| 1 | 稀疏灌木林(OSH) | 覆盖度10%~60%,高度低于2 m,常绿或落叶的木本植被用地 |
| 2 | 稀树草原(SAV) | 森林覆盖度10%~30%,高度超过2 m,和草本植被或其他林下植被系统组合的混合用地类型 |
| 3 | 有林草地(WSA) | 森林覆盖度30%~60%,高度超过2 m,和草本植被或其他林下植被系统组成的混合用地类型 |
| 4 | 草地(GRA) | 由草本植被类型覆盖,森林和灌木覆盖度小于10% |
| 序号 | 站点ID | 站点名称 | 纬度 | 经度 | 植被 | 年均降水量/mm | 观测时间 | 干旱指数 |
|---|---|---|---|---|---|---|---|---|
| 1 | US-SRM | Santa Rita Mesquite | 31°49′N | 110°52′W | WSA | 380 | 2004—2014 | 0.18 |
| 2 | AU-RDF | Red Dirt Melon Farm, Northern Territory | 14°33′S | 132°28′E | WSA | — | 2011—2013 | 0.40 |
| 3 | AU-Gin | Gingin | 31°22′S | 115°42′E | WSA | 502 | 2011—2014 | 0.32 |
| 4 | AU-ASM | Alice Springs | 22°16′S | 133°15′E | SAV | 320 | 2010—2014 | 0.15 |
| 5 | AU-Dry | Dry River | 15°15′S | 132°22′E | SAV | 330 | 2008—2014 | 0.16 |
| 6 | AU-DaS | Daly River Savanna | 14°09′S | 131°23′E | SAV | 470 | 2008—2014 | 0.58 |
| 7 | AU-Cpr | Calperum | 34°00′S | 140°35′E | SAV | 390 | 2010—2014 | 0.12 |
| 8 | US-Whs | Walnut Gulch Lucky Hills Shrub | 31°44′N | 110°03′W | OSH | 320 | 2007—2014 | 0.34 |
| 9 | US-SRC | Santa Rita Creosote | 31°54′N | 110°50′W | OSH | 330 | 2008—2014 | 0.48 |
| 10 | CA-SF3 | Saskatchewan - Western Boreal, forest burned in 1998 | 54°05′N | 106°00′W | OSH | 336 | 2001—2006 | 0.12 |
| 11 | US-Wkg | Walnut Gulch Kendall Grasslands | 31°44′N | 109°56′W | GRA | 407 | 2004—2014 | 0.17 |
| 12 | US-Var | Vaira Ranch-Ione | 38°24′N | 120°57′W | GRA | — | 2000—2014 | 0.33 |
| 13 | US-SRG | Santa Rita Grassland | 31°47′N | 110°49′W | GRA | 420 | 2008—2014 | 0.22 |
| 14 | US-AR2 | ARM USDA UNL OSU Woodward Switchgrass 2 | 36°38′N | 99°36′W | GRA | 411 | 2009—2012 | 0.30 |
| 15 | US-AR1 | ARM USDA UNL OSU Woodward Switchgrass 1 | 36°25′N | 99°25′W | GRA | 508 | 2009—2012 | 0.30 |
| 16 | IT-MBo | Monte Bondone | 46°00′N | 11°03′E | GRA | — | 2003—2013 | 0.38 |
| 17 | CN-Sw2 | Siziwang Grazed (SZWG) | 41°47′N | 111°54′E | GRA | 303 | 2010—2012 | 0.15 |
| 18 | CN-Cng | Changling | 44°35′N | 123°30′E | GRA | 400 | 2007—2010 | 0.31 |
| 19 | AU-Ync | Jaxa | 34°59′N | 146°17′E | GRA | 250 | 2012—2014 | 0.23 |
| 20 | AU-TTE | Ti Tree East | 22°17′S | 133°38′E | GRA | 278 | 2012—2014 | 0.09 |
| 21 | AU-Stp | Sturt Plains | 17°09′S | 133°21′E | GRA | 579 | 2008—2014 | 0.23 |
| 22 | AU-Rig | Riggs Creek | 36°39′S | 145°34′E | GRA | 445 | 2011—2014 | 0.37 |
| 23 | AU-Emr | Emerald | 23°51′S | 148°28′E | GRA | 568 | 2011—2013 | 0.28 |
| 24 | AU-DaP | Daly River Pasture | 14°03′S | 131°19′E | GRA | — | 2007—2013 | 0.50 |
表2 FLUXNET 站点信息
Table 2 Details of FLUXNET sites
| 序号 | 站点ID | 站点名称 | 纬度 | 经度 | 植被 | 年均降水量/mm | 观测时间 | 干旱指数 |
|---|---|---|---|---|---|---|---|---|
| 1 | US-SRM | Santa Rita Mesquite | 31°49′N | 110°52′W | WSA | 380 | 2004—2014 | 0.18 |
| 2 | AU-RDF | Red Dirt Melon Farm, Northern Territory | 14°33′S | 132°28′E | WSA | — | 2011—2013 | 0.40 |
| 3 | AU-Gin | Gingin | 31°22′S | 115°42′E | WSA | 502 | 2011—2014 | 0.32 |
| 4 | AU-ASM | Alice Springs | 22°16′S | 133°15′E | SAV | 320 | 2010—2014 | 0.15 |
| 5 | AU-Dry | Dry River | 15°15′S | 132°22′E | SAV | 330 | 2008—2014 | 0.16 |
| 6 | AU-DaS | Daly River Savanna | 14°09′S | 131°23′E | SAV | 470 | 2008—2014 | 0.58 |
| 7 | AU-Cpr | Calperum | 34°00′S | 140°35′E | SAV | 390 | 2010—2014 | 0.12 |
| 8 | US-Whs | Walnut Gulch Lucky Hills Shrub | 31°44′N | 110°03′W | OSH | 320 | 2007—2014 | 0.34 |
| 9 | US-SRC | Santa Rita Creosote | 31°54′N | 110°50′W | OSH | 330 | 2008—2014 | 0.48 |
| 10 | CA-SF3 | Saskatchewan - Western Boreal, forest burned in 1998 | 54°05′N | 106°00′W | OSH | 336 | 2001—2006 | 0.12 |
| 11 | US-Wkg | Walnut Gulch Kendall Grasslands | 31°44′N | 109°56′W | GRA | 407 | 2004—2014 | 0.17 |
| 12 | US-Var | Vaira Ranch-Ione | 38°24′N | 120°57′W | GRA | — | 2000—2014 | 0.33 |
| 13 | US-SRG | Santa Rita Grassland | 31°47′N | 110°49′W | GRA | 420 | 2008—2014 | 0.22 |
| 14 | US-AR2 | ARM USDA UNL OSU Woodward Switchgrass 2 | 36°38′N | 99°36′W | GRA | 411 | 2009—2012 | 0.30 |
| 15 | US-AR1 | ARM USDA UNL OSU Woodward Switchgrass 1 | 36°25′N | 99°25′W | GRA | 508 | 2009—2012 | 0.30 |
| 16 | IT-MBo | Monte Bondone | 46°00′N | 11°03′E | GRA | — | 2003—2013 | 0.38 |
| 17 | CN-Sw2 | Siziwang Grazed (SZWG) | 41°47′N | 111°54′E | GRA | 303 | 2010—2012 | 0.15 |
| 18 | CN-Cng | Changling | 44°35′N | 123°30′E | GRA | 400 | 2007—2010 | 0.31 |
| 19 | AU-Ync | Jaxa | 34°59′N | 146°17′E | GRA | 250 | 2012—2014 | 0.23 |
| 20 | AU-TTE | Ti Tree East | 22°17′S | 133°38′E | GRA | 278 | 2012—2014 | 0.09 |
| 21 | AU-Stp | Sturt Plains | 17°09′S | 133°21′E | GRA | 579 | 2008—2014 | 0.23 |
| 22 | AU-Rig | Riggs Creek | 36°39′S | 145°34′E | GRA | 445 | 2011—2014 | 0.37 |
| 23 | AU-Emr | Emerald | 23°51′S | 148°28′E | GRA | 568 | 2011—2013 | 0.28 |
| 24 | AU-DaP | Daly River Pasture | 14°03′S | 131°19′E | GRA | — | 2007—2013 | 0.50 |
| 植被类型 | 统计指标 | ||||
|---|---|---|---|---|---|
| 平均值 | 标准差 | 变异系数 | 最大值 | 最小值 | |
| 有林草地 | 0.31 | 0.08 | 0.27 | 0.45 | 0.23 |
| 稀树草原 | 0.36 | 0.09 | 0.27 | 0.49 | 0.23 |
| 稀疏灌木林 | 0.25 | 0.09 | 0.37 | 0.43 | 0.17 |
| 草地 | 0.33 | 0.03 | 0.09 | 0.40 | 0.29 |
| 干旱半干旱区典型植被 | 0.31 | 0.08 | 0.26 | 0.49 | 0.17 |
表3 干旱半干旱区4种典型植被类型月均蒸散比
Table 3 Statistics of monthly average evaporative fractions ( EF ) for four typical vegetation types in arid and semi-arid regions
| 植被类型 | 统计指标 | ||||
|---|---|---|---|---|---|
| 平均值 | 标准差 | 变异系数 | 最大值 | 最小值 | |
| 有林草地 | 0.31 | 0.08 | 0.27 | 0.45 | 0.23 |
| 稀树草原 | 0.36 | 0.09 | 0.27 | 0.49 | 0.23 |
| 稀疏灌木林 | 0.25 | 0.09 | 0.37 | 0.43 | 0.17 |
| 草地 | 0.33 | 0.03 | 0.09 | 0.40 | 0.29 |
| 干旱半干旱区典型植被 | 0.31 | 0.08 | 0.26 | 0.49 | 0.17 |
图2 干旱半干旱区4种典型植被类型多年平均蒸散比箱式图
Fig.2 Box plot of multi-year average evaporative fractions (EF) for four typical vegetation types in arid and semi-arid regions
图3 干旱半干旱区不同植被类型蒸散比多年月平均变化
Fig.3 Temporal variation of multi-year average evaporative fractions (EF) for different typical vegetation types in dryland ecosystems
图4 干旱半干旱区月均蒸散比与气象水文要素的Spearman相关系数柱状图
Fig.4 Bar chart of Spearman correlation coefficients between monthly average evaporative fractions (EF) and meteorological-hydrological factors in dryland ecosystems
| 植被类型 | 土壤水分 | 气温 | 短波辐射 | 长波辐射 | 饱和水汽压差 | 降水量 |
|---|---|---|---|---|---|---|
| 有林草地 | 0.716* | -0.237* | -0.502* | 0.059 | -0.554* | 0.670* |
| 稀树草原 | 0.576* | 0.191* | -0.227* | 0.547* | -0.374* | 0.376* |
| 稀疏灌木林 | 0.733* | -0.469* | -0.600* | -0.263* | -0.606* | 0.587* |
| 草地 | 0.779* | -0.357* | -0.438* | -0.073 | -0.595* | 0.606* |
表4 干旱半干旱区典型植被类型蒸散比与气象水文变量的相关性分析
Table 4 Correlation analysis between evaporative fractions ( EF ) and meteorological moisture variables for typical vegetation types in dryland ecosystems
| 植被类型 | 土壤水分 | 气温 | 短波辐射 | 长波辐射 | 饱和水汽压差 | 降水量 |
|---|---|---|---|---|---|---|
| 有林草地 | 0.716* | -0.237* | -0.502* | 0.059 | -0.554* | 0.670* |
| 稀树草原 | 0.576* | 0.191* | -0.227* | 0.547* | -0.374* | 0.376* |
| 稀疏灌木林 | 0.733* | -0.469* | -0.600* | -0.263* | -0.606* | 0.587* |
| 草地 | 0.779* | -0.357* | -0.438* | -0.073 | -0.595* | 0.606* |
图6 干旱半干旱区4种植被类型蒸散比-土壤水分非线性拟合曲线
Fig.6 Nonlinear fitting curves of evaporative fractions (EF) and soil moisture for four vegetation types in arid and semi-arid regions
| [1] | 刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1):118-122. |
| [2] | Fisher J B, Melton F, Middleton E,et al.The future of evapotranspiration:global requirements for ecosystem functioning,carbon and climate feedbacks,agricultural management,and water resources[J].Water Resources Research,2017,53(4):2618-2626. |
| [3] | 王怡宁,朱月灵.蒸渗仪国内外应用现状及研究趋势[J].水文,2018,38(1):81-85. |
| [4] | 陈世苹,游翠海,胡中民,等.涡度相关技术及其在陆地生态系统通量研究中的应用[J].植物生态学报,2020,44(4):291-304. |
| [5] | 陈晗.区域蒸散发的实测及模拟研究[D].重庆:重庆交通大学,2017. |
| [6] | 王建林,温学发,孙晓敏,等.涡动相关系统和小孔径闪烁仪观测的森林显热通量的异同研究[J].地球科学进展,2010,25(11):1217-1227. |
| [7] | Zhang K, Kimball J S, Running S W.A review of remote sensing based actual evapotranspiration estimation[J].WIREs Water,2016,3(6):834-853. |
| [8] | 李菲菲,饶良懿,吕琨珑,等.Priestley-Taylor模型参数修正及在蒸散发估算中的应用[J].浙江农林大学学报,2013,30(5):748-754. |
| [9] | 刘斌,胡继超,赵秀兰,等.应用Penman-Monteith模型估算稻田蒸散的误差分析[J].中国农业气象,2015,36(1):24-32. |
| [10] | 杜加强,舒俭民,刘成程,等.黄河上游参考作物蒸散量变化特征及其对气候变化的响应[J].农业工程学报,2012,28(12):92-100. |
| [11] | 梁丽乔,李丽娟,张丽,等.松嫩平原西部生长季参考作物蒸散发的敏感性分析[J].农业工程学报,2008,24(5):1-5. |
| [12] | 李发鹏,徐宗学,李景玉.基于MODIS数据的黄河三角洲区域蒸散发量时空分布特征[J].农业工程学报,2009,25(2):113-120. |
| [13] | Sun Z, Gebremichael M, Ardö J,et al.Estimation of daily evapotranspiration over Africa using MODIS/Terra and SEVIRI/MSG data[J].Atmospheric Research,2012,112:35-44. |
| [14] | Monteith J.Evaporation and surface temperature[J].Quarterly Journal of the Royal Meteorological Society,1981,107(451):1-27. |
| [15] | 王世婷, 章妮, 陈克龙, 等. 温性荒漠草原生长季光伏电站地表能量交换特征[J]. 中国沙漠, 2024, 44 (6): 249-257. |
| [16] | Ford T W, Wulff C O, Quiring S M.Assessment of observed and model-derived soil moisture-evaporative fraction relationships over the United States Southern Great Plains[J].Journal of Geophysical Research:Atmospheres,2014,119(11):6279-6291. |
| [17] | Findell K L, Gentine P, Lintner B R,et al.Probability of afternoon precipitation in eastern United States and Mexico enhanced by high evaporation[J].Nature Geoscience,2011,4(7):434-439. |
| [18] | Haghighi E, Short Gianotti D J, Akbar R,et al.Soil and atmospheric controls on the land surface energy balance:a generalized framework for distinguishing moisture-and energy-limited evaporation regimes[J].Water Resources Research,2018,54(3):1831-1851. |
| [19] | Bagley J E, Kueppers L M, Billesbach D P,et al.The influence of land cover on surface energy partitioning and evaporative fraction regimes in the US Southern Great Plains[J].Journal of Geophysical Research:Atmospheres,2017,122(11):5793-5807. |
| [20] | Tong B, Guo J, Xu H,et al.Effects of soil moisture,net radiation,and atmospheric vapor pressure deficit on surface evaporation fraction at a semi-arid grass site[J].The Science of the Total Environment,2022,849:157890. |
| [21] | Dirmeyer P A, Zeng F J, Ducharne A,et al.The sensitivity of surface fluxes to soil water content in three land surface schemes[J].Journal of Hydrometeorology,2000,1(2):121-134. |
| [22] | Phillips T J, Klein S A.Land-atmosphere coupling manifested in warm-season observations on the U.S.Southern Great Plains[J].Journal of Geophysical Research:Atmospheres,2014,119(2):509-528. |
| [23] | Yang C, Ma Y, Yuan Y,et al.Terrestrial and atmospheric controls on surface energy partitioning and evaporative fraction regimes over the Tibetan Plateau in the growing season[J].Journal of Geophysical Research:Atmospheres,2021,126(21):e2021JD035011. |
| [24] | Hammerle A, Haslwanter A, Tappeiner U,et al.Leaf area controls on energy partitioning of a temperate mountain grassland[J].Biogeosciences,2008,5(2):421-431. |
| [25] | Seneviratne S I, Corti T, Davin E L,et al.Investigating soil moisture-climate interactions in a changing climate:a review[J].Earth-Science Reviews,2010,99(3/4):125-161. |
| [26] | Fraser E D G, Dougill A J, Hubacek K,et al.Assessing vulnerability to climate change in dryland livelihood systems:conceptual challenges and interdisciplinary solutions[J].Ecological Society,2011,16(3):3. |
| [27] | 药静宇.气候变化背景下干旱区碳通量的特征分析[D].兰州:兰州大学,2021. |
| [28] | 潘兴瑶,夏军,张橹.土壤水分随机模型支持下的土壤水平衡研究进展[J].资源科学,2008,30(3):460-467. |
| [29] | Feldman A F, Short Gianotti D J, Trigo I F,et al.Satellite-based assessment of land surface energy partitioning-soil moisture relationships and effects of confounding variables[J].Water Resources Research,2019,55(12):10657-10677. |
| [30] | Betts A K.Understanding hydrometeorology using global models[J].Bulletin of the American Meteorological Society,2004,85:1673-1688. |
| [31] | Gentine P, Green J K, Guérin M,et al.Coupling between the terrestrial carbon and water cycles:a review[J].Environmental Research Letters,2019,14:083003. |
| [32] | Granier A, Reichstein M, Bréda N,et al.Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year:2003[J].Agricultural and Forest Meteorology,2007,143:123-145. |
| [33] | Groffman P M, Baron J S, Blett T,et al.Ecological thresholds:The key to successful environmental management or an important concept with no practical application?[J].Ecosystems,2006,9(1):1-13. |
| [34] | Zhang L, Sha S, Zhang Q,et al.Investigating the coupling relationship between soil moisture and evaporative fraction over China's transitional climate zone[J].Hydrology,2023,10(12):221. |
| [35] | 侯利萍,何萍,范小杉,等.生态阈值确定方法综述[J].应用生态学报,2021,32(2):711-718. |
| [36] | Fong Y, Huang Y, Gilbert P B,et al.chngpt:Threshold regression model estimation and inference[J].BMC Bioinformatics,2017,18(1):454. |
| [37] | Williams I N, Torn M S.Vegetation controls on surface heat flux partitioning,and land-atmosphere coupling[J].Geophysical Research Letters,2015,42(21):9416-9424. |
| [38] | 袁小环,杨学军,陈超,等.基于蒸渗仪实测的参考作物蒸散发模型北京地区适用性评价[J].农业工程学报,2014,30(13):104-110. |
| [39] | Dong J, Akbar R, Giaotti D J S,et al.Can surface soil moisture information identify evapotranspiration regime transitions?[J].Geophysical Research Letters,2022,49(7):e2021GL097697. |
| [40] | Fu Z, Ciais P, Wigneron J P,et al.Global critical soil moisture thresholds of plant water stress[J].Nature Communications,2024,15(1):4826. |
| [41] | Fu Z, Ciais P, Feldman A F,et al.Critical soil moisture thresholds of plant water stress in terrestrial ecosystems[J].Science Advances,2022,8(44):eabq7827. |
| [42] | Toms J D, Lesperance M L.Piecewise regression:a tool for identifying ecological thresholds[J].Ecology,2003,84:2034-2041. |
| [43] | Akaike H T.A new look at the statistical model identification[J].Automatic Control IEEE Transactions,1974,19(6):716-723. |
| [44] | Pastorello G, Trotta C, Canfora E,et al.The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data[J].Scientific Data,2020,7:225. |
| [45] | Baldocchi D, Falge E, Gu L H,et al.FLUXNET:a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,water vapor,and energy flux densities[J].Bulletin of the American Meteorological Society,2001,82(11):2415-2434. |
| [46] | Loveland T, Reed B, Brown J F,et al.Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data[J].International Journal of Remote Sensing,2000,21(6/7):1303-1330. |
| [47] | Reichstein M, Falge E, Baldocchi D,et al.On the separation of net ecosystem exchange into assimilation and ecosystem respiration:review and improved algorithm[J].Global Change Biology,2005,11(9):1424-1439. |
| [48] | Vuichard N, Papale D.Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis[J].Earth System Science Data,2015,7(2):157-171. |
| [49] | Chen L, Dirmeyer P A, Guo Z C,et al.Pairing FLUXNET sites to validate model representations of land-use/land-cover change[J].Hydrology and Earth System Sciences,2018,22(1):111-125. |
| [50] | Ge J, Liu Q, Zan B L,et al.Deforestation intensifies daily temperature variability in the northern extratropics[J].Nature Communications,2022,13(1):5955. |
| [51] | Crago R D.Conservation and variability of the evaporative fraction during the daytime[J].Journal of Hydrology,1996,180:173-194. |
| [52] | Zomer R J, Xu J, Trabucco A.Version 3 of the global aridity index and potential evapotranspiration database[J].Scientific Data,2022,9:409. |
| [53] | Chen L J, Chen H S, Du X G,et al.Analysis of spatiotemporal distribution of evaporation fractions of different vegetation types based on FLUXNET site[J].IEEE Geoscience and Remote Sensing Letters,2024,21:1-5. |
| [54] | Bond W J.What limits trees in C4 grasslands and savannas?[J].Annual Review of Ecology,Evolution,and Systematics,2008,39:641-659. |
| [55] | Fan Y, Miguez-Macho G, Jobbágy E G,et al.Hydrologic regulation of plant rooting depth[J].Proceedings of the National Academy of Sciences,2017,114(40):10572-10577. |
| [56] | Zhou Y, Wigley B J, Case M F,et al.Rooting depth as a key woody functional trait in savannas[J].New Phytologist,2020,227(5):1350-1361. |
| [57] | Rojas-Botero S, Teixeira L H, Prucker P,et al.Root traits of grasslands rapidly respond to climate change,while community biomass mainly depends on functional composition[J].Functional Ecology,2023,37(7):1841-1855. |
| [58] | Buitink J, Swank A M, Van der Ploeg M,et al.Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices[J].Hydrology and Earth System Sciences,2020,24(12):6021-6031. |
| [59] | 徐绍源.干旱半干旱地区土壤水分胁迫条件下的蒸散发估算研究[D].兰州:兰州大学,2022. |
| [60] | 邹慧,高光耀,傅伯杰.干旱半干旱草地生态系统与土壤水分关系研究进展[J].生态学报,2016,36(11):3127-3136. |
| [61] | Chen W, Ciais P, Zhu D,et al.Feedbacks of soil properties on vegetation during the Green Sahara period[J].Quaternary Science Reviews,2020,240:106389. |
| [62] | 李熙萌,冯金朝,周芸芸,等.水分对科尔沁沙地差不嘎蒿气体交换特性的影响[J].中国沙漠,2012,32(3):744-749. |
| [63] | 吴佳.非洲和澳大利亚稀树草原树种幼苗的温室比较研究[D].北京:清华大学,2010. |
| [64] | Van Genuchten M T.A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J].Soil Science Society of America Journal,1980,44(5):892-898. |
| [65] | Mualem Y.A new model for predicting the hydraulic conductivity of unsaturated porous media[J].Water Resources Research,1976,12(3):513-522. |
| [66] | Fu Z, Ciais P, Makowski D,et al.Uncovering the critical soil moisture thresholds of plant water stress for European ecosystems[J].Global Change Biology,2021,28(6):2111-2123. |
| [67] | Konings A G, Gentine P.Global variations in ecosystem-scale isohydricity[J].Global Change Biology,2017,23(2):891-905. |
| [68] | McDowell N, Pockman W T, Allen C D,et al.Mechanisms of plant survival and mortality during drought:Why do some plants survive while others succumb to drought?[J].New Phytologist,2008,178(4):719-739. |
| [1] | 杨述睿, 杨甜, 张璐, 张定海, 戚海迪. 腾格里沙漠东南缘半固定沙丘土壤水分影响因素[J]. 中国沙漠, 2025, 45(5): 328-337. |
| [2] | 姚淑霞, 张铜会, 赵传成. 科尔沁沙地沙质草地土壤水分时间序列分析[J]. 中国沙漠, 2025, 45(4): 67-74. |
| [3] | 马亚丽, 马莉, 杨丽萍, 王思晴, 赵长明, 陈宁. 生态水文视角下的旱区生物土壤结皮-维管植物共存模式[J]. 中国沙漠, 2025, 45(3): 121-130. |
| [4] | 宁婷, 张定海, 赵有益, 江晶. 腾格里沙漠土壤水分含量与地形、植被的关系[J]. 中国沙漠, 2024, 44(5): 133-142. |
| [5] | 陈链璇, 曹生奎, 曹广超, 雷义珍, 赵浩然, 李文斌. 青海湖流域蒸散发对土壤水分的时空响应特征[J]. 中国沙漠, 2024, 44(3): 202-212. |
| [6] | 雍天, 张金霞, 陈丽娟, 席海洋, 张斌武, 甘开元. 乌兰布和沙漠沿黄河段土壤水盐空间分异特征及其成因[J]. 中国沙漠, 2024, 44(3): 247-258. |
| [7] | 刘丹一, 冯伟, 王涛, 杨文斌, 朱斌, 邹慧, 周密. 低覆盖治沙理论下人工与自然耦合的植被修复机理综述[J]. 中国沙漠, 2024, 44(1): 170-177. |
| [8] | 潘颜霞, 赵洋, 张志山. 生态垫铺设对流沙固定及土壤温湿度的影响[J]. 中国沙漠, 2023, 43(5): 186-193. |
| [9] | 程姗岭, 于海鹏, 任钰, 周洁, 罗红羽, 刘晨汐, 龚咏琪. 中国干旱半干旱区气候异常影响机理研究进展[J]. 中国沙漠, 2023, 43(3): 21-35. |
| [10] | 卫雨西, 陈丽娟, 席海洋, 张成琦, 甘开元, 雍天, 张金霞. 石羊河流域土壤水分和电导率的空间分布特征[J]. 中国沙漠, 2023, 43(3): 264-273. |
| [11] | 洪光宇, 王晓江, 刘铁山, 海龙, 吴振廷, 胡尔查, 高孝威, 杨海峰, 李卓凡, 李梓豪, 斯琴, 王乐军. 基于Hydrus-1D模型的毛乌素沙地杨柴( Hedysarum laeve )灌木林土壤含水量模拟[J]. 中国沙漠, 2022, 42(6): 233-242. |
| [12] | 李琳, 刘鹄, 孙程鹏, 赵文智. 基于地下水位与土壤含水量的地下水蒸散发估算[J]. 中国沙漠, 2022, 42(6): 277-287. |
| [13] | 赵春彦, 秦洁, 贺晓慧, 周冬蒙. 轻度沙埋对典型荒漠植物的影响[J]. 中国沙漠, 2022, 42(5): 63-72. |
| [14] | 张越, 陈思宇, 毕鸿儒, 曹佳慧, 罗源, 龚咏琪, 陈渔. 干旱半干旱区农田土壤风蚀特征及参数化研究进展[J]. 中国沙漠, 2022, 42(3): 105-117. |
| [15] | 赵文智, 白雪莲, 刘婵. 巴丹吉林沙漠南缘的植物固沙问题[J]. 中国沙漠, 2022, 42(1): 5-11. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn